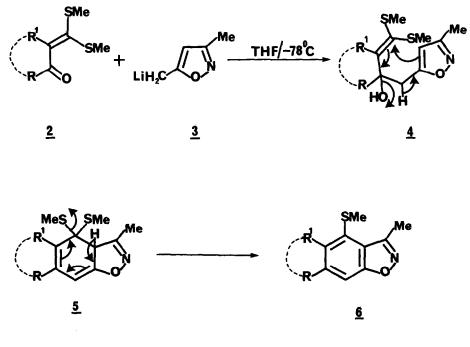
CYCLOAROMATIZATION OF 🗢 -OXOKETENE DITHIOACETALS WITH 3-METHYL-5-LITHIOMETHYLISOXAZOLE:

A NEW GENERAL APPROACH FOR SYNTHESIS OF SUBSTITUTED AND ANNELATED

1,2-BENZISOXAZOLES¹

Maliakel P. Balu, Dinah Pooranchand, Hiriyakkanavar Ila* and Hiriyakkanavar Junjappa* Department of Chemistry, North-Eastern Hill University, Shillong 793 003, Meghalaya, India


<u>Summary</u>: A new general method for the synthesis of substituted and annelated 1,2-benzisoxazoles has been developed by cycloaromatization of α -oxoketene dithioacetals with 3-methyl-5-lithiomethylisoxazole.

The discovery of our aromatic (or heteroaromatic) annelation involving the reaction of $allyl^2$, benzyl³, propargyl⁴ magnesium halides, 2-picolyllithium⁵ and Reformatsky reagent¹ with α -oxoketene dithioacetals has been shown to be of general application to yield the corresponding substituted benzene, naphthalene, polycyclic aromatic and quinolizinium compounds in good yields. The overall process was aimed at creating the aromatic ring systems from easily available aliphatic precursors. In continuation of these studies, we propose yet another broad based plan to explore the possibilities of annelating aromatic ring over preconstructed five membered heterocycles by condensing α -oxoketene dithioacetals with lithioallyl systems of general formula <u>1</u>. As a part of this programme, we have studied the reaction of 3-methyl-5-lithiomethylisoxazole (<u>3</u>) with α -oxoketene dithioacetals <u>2</u> to yield the corresponding substituted and annelated 1,2-benzisoxazoles <u>6</u> in good yields. We herein report our results in this communication.

When <u>2a</u> was reacted with <u>3</u> at -78°C, the corresponding carbinol acetal <u>4a</u> was obtained in nearly quantitative yield, which was directly subjected to cyclization in the presence of boron trifluoride etherate in refluxing benzene to give a colourless crystalline product, characterized as 3-methyl-4-methylthio-6-phenyl-1,2-benzisoxazole (<u>6a</u>) (73%); $\mathcal{V}_{max}(KBr)$: 1600, 1566, 1425, 1388, 1345 cm⁻¹; ¹H n.m.r. (CCl₄) (90 MHz): § 2.56(s,3H,CH₃); 2.68(s,3H, SCH₃); 7.02(brs,1H,<u>H</u>-7), 7.20-7.67(m,6H,ArH), **6**_C (CDCl₃); 11.47(<u>CH₃</u>); 17.23(<u>SCH₃</u>); 103.80, 114.59(C-7 and C-5); 125.45, 127.24, 128.35, (CH, pheny1); 128.36, 140.20, 142.66, 142.41 (quaternary C); 159.71 (C-3); 168.07 (C-8); MS(m/z); 155(M⁺,100%). Cycloaromatization of other acyclic dithioacetals <u>2b-g</u> with <u>3</u> under identical conditions similarly afforded the corresponding 6-substituted 1,2-benzisoxazoles <u>6b-g</u> in 54-68% overall yields⁶. The corresponding 5,6-annelated 1,2-benzisoxazole <u>6h-1</u> were similarly obtained from the respective cyclic dithioacetals <u>2h-1</u> in 57-81% yields⁶.

The overall transformation is shown in the Scheme. The carbinols $\underline{4}$ undergo cyclodehydration as expected by participation of the isoxazole 4,5 double bond, followed by elimination of methylmercapto group to give the desired benzisoxazoles $\underline{6}$ in good yields. The reported methods for 1,2-benzisoxazoles apparently involve construction of isoxazole ring on either functionalized benzene ring or cyclohexane derivatives^{7a}. The present reaction, utilizing easily accessible α -oxoketene dithioacetals from a variety of acyclic and cyclic active methylene ketones, provides a novel approach for substituted and annelated 1,2-benzisoxazoles through benzoannelation of isoxazole derivative. Further work to extend this method for the synthesis of other benzoheterocycles is in progress.

Scheme

Ţ	<u>'a</u>	b	l	e

			<u>Table</u>						
Entry	Starting material	R	R ¹	Product	Yield %	m.p. ℃			
				R ON					
1	<u>2a</u>	C ₆ H ₅	н	$6\underline{a}, R = C_8H_5$	73	70			
2	<u>2b</u>	4-CI C ₆ H ₄	н	$\underline{6b}, R = 4 - CIC_6H_4$	66	155			
3	<u>2c</u>	4-MeOC ₆ H ₄	н	$\underline{6c}, R = 4 - MeOC_6H_4$	68	130			
4	<u>2d</u>	ß-naphthyl	н	<u>6d</u> , R = β-naphthyl	64	145			
5	<u>2e</u>	Me	н	<u>6e</u> , R=Me	54	85			
6	<u>2f</u>		н	<u>6f</u> , R =	59	110			
7	<u>2g</u>	\sqrt{s}	н	6g, R=	61	125			
				(CH ₂)n	Me N				
8	<u>2h</u>	—(сн)	<u>6h</u> , n=1	65	42			
9	<u>2i</u>	—(сн; —(сн;	2)5	<u>6i</u> , n=2	67	62			
R^2									
10	<u>2j</u>	R ² =H, X=-CH	2	<u>6j,</u> R ² =H, X=−CI	H _ 57	160			
11	<u>2k</u>	R ² =H, X = -(C	H ₂)	<u>6k</u> , R ² =H, X= −(CH ₂)- 76	152			
12	<u>21</u>	R ² =CH ₃ , X=-S-(CH ₂) ₂ -	<u>61</u> , R ² =CH ₃ ,X=- S -((CH₂) <u></u> - 81	185			
^a Yield of pure isolated product based on <u>2</u>									

In a typical experiment, a solution of $\underline{2a}$ (2.24g, 0.01 mol) in THF (25 ml) is added to a solution of 3-methyl-5-lithiomethylisoxazole^{7b,8} (0.015 mol in 25 ml of THF) at -78°C under N₂ atmosphere and the reaction mixture is further stirred at the same temperature for 0.5 hr. It is then warmed to 0°C (1 hr) and stirring is continued further for 2 hr. Work-up of the reaction mixture as described earlier³ gave the crude carbinol <u>4a</u> (3.05g, 95%) as viscous liquid, which was dissolved in dry benzene (50ml)treated with boron trifluoride etherate(2 ml) refluxed for 1 hr. The reaction mixture was then poured over cold saturated NaHCO₃ solution, extracted with CHCl₃(2x50 ml), washed with water, dried (Na₂SO₄) and evaporated to give a viscous residue, which was purified by passing through silica gel column (hexane as eluent) to give <u>6a</u> as colourless crystals (chloroform), 1.86g (73%).

<u>Acknowledgement</u>.- M.P.B. and D.P. thank D.S.T., New Delhi for Junior Research Fellowships. Financial assistance from D.S.T. and U.G.C. New Delhi under COSSIST programme is also acknowledged.

References and Notes

- Part 70 of the series; Part 69: A. Datta, H. Ila and H. Junjappa, <u>Tetrahedron Lett</u>. (communicated).
- 2. G. Singh, H. Ila and H. Junjappa, Tetrahedron Lett. 25, 5095 (1984).
- 3. M.P. Balu, G. Singh, H. Ila and H. Junjappa, Tetrahedron Lett., 27, 117 (1986).
- 4. A.K. Gupta, H. Ila and H. Junjappa, <u>Tetrahedron Lett.</u>, <u>28</u>, 1459 (1987).
- 5. M.P. Balu, H. Ila and H. Junjappa, Tetrahedron Lett., 28, 3023 (1987).
- All the product benzisoxazoles <u>6b-1</u> were characterized with the help of spectral and analytical data; selected data for:

6h:
$$\gamma_{max}$$
 (KBr): 1605, 1580, 1430, 1380, 1330, 1300 cm⁻¹; S_{H} (CC1₄): 1.61-1.98(m,4H,CH₂);
2.34(s,3H,CH₃); 2.66(s,3H,SCH₃); 2.60-3.13(m,4H,CH₂); 7.01(s,1H,ArH); m/z:233(M⁺,93%).
6k: γ_{max} (KBr): 1600, 1585, 1513, 1430, 1386, 1345, 1250 cm⁻¹; S_{H} (CDC1₃): 2.30(s,3H,
CH₃); 2.80(s,3H,SCH₃); 2.72-3.43(m,A₂B₂,4H,CH₂); 7.16-7.38(m,3H,ArH); 7.60-7.83(m,2H,ArH);
 S_{C} (CDC1₃): 12.75(CH₃); 20.14(SCH₃); 26.04(CH₂); 29.16(CH₂); 105.61, 124.88, 127.24,
127.97, 128.60(CH, aromatic); 123.03, 128.91, 134.24, 134.26, 138.17, 138.26, 155.83,
162.50(quaternary C); m/z:281(M⁺,100%).

- S.A. Lang, Jr. and Y.- i Lin in "<u>Comprehensive Heterocyclic Chemistry</u>", K.T. Potts, Ed., Pergamon Press, Volume 6, Part 4B, Chapt. 4.16, (a) p.114-120 (b) p. 48-50.
- R.G. Micetich, <u>Can. J. Chem</u>., <u>48</u>, 2006 (1970).
 (Received in UK 24 November 1987)